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LARGE~-SAMPLE PROPERTIES OF LEAST-SQUARES ESTIMATORS
OF HARMONIC COMPONENTS IN A TIME SERIES WITH STATIONARY
RESIDUAILS. I. INDEPENDENT RESIDUALS.

by
A. M. Walker

1. Introduction

Let (X, t=0,%t1, +2,...} be a discrete parameter time series

.t)
generated by a model of the form

X, = mg + Y, (1.1)
where
q .
m = E(Xt) = rZ:]. (Arcos wt + B sin wrt) s (1.2)
with 0<w < (which involves no loss of generality), and
oo
v, o= ) 8,08 e, (1.3)
u=0

the et being distributed identically and independently each with mean

zero and finite variance E(ei) = v, and the gu(g) being specified func-

tions of an unknown vector-valued parameter 6 = (91’92""’9p) such that

=7 g2(e) < w; to avoid indeterminacy we take g.(9) = 1. ({X,} thus
u=0 ~u = 0= t

has a systematic component consisting of the sum of ¢ simple harmonic

components with different frequencies wr and a residual or 'noise'! com-

ponent which is a completely stationary series having spectral density

() = (20 |3 gl S (1.4)
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and is usually called a linear process (see, for example, Hannan, 1960,
p. 33). : |

Suppose that the values of the other parameters in the model,
name 1y Ar?"Br’ W, (L<r<gq) and w, 'are also unknown. We then
haVe‘a fairly generai type of 'hidden periodicities' model, the term
‘hidden periodicity' denoting a harmonic éomponent whose frequency as
well as.its amplitude and phase is unknown. The restricted model
obtained by taking-the residual coﬁponent to consiét of 'white noise’,
that is, gu(g)'= O for u>1, so that (1.5).just becomes Y. =&
and the parameter @6 disappears, has been quite widely used in connec-
fiog with physical. and economic phenomena, though in recent years it
has become less popular because of the realisation that analyses based
on this can be very misleading if the 'white noise' assumption is not.a
goog approximation.

The problem of estimating the parameters inlthe model (l.lj from
data consisting of n observations .X(n) ='(X1,Xé,...,Xn), and of
determining the approximate distribution of the estimators for large n
was dgait with by Whittle <l952). He useéd a method of estimation which
was approximately equivaleht to an application of the principle of
least squares, becoming approximately the method of maximum-likelihood
when € has a normal distribution so that {X{} becomes a normal or
Gaussian process. By means of heuristic arguments he obtained the
followiﬁg results. |

(1) The estimator (Krgﬁr,Gr) is asymptoticaily (n > «) normal

with mean O and covariance matrix



1 0 % nB_ .
n 0 1 ) n AI. P) (1'5)
1 1 1 2,.2.2
§l’lBr -—2-nA gn(Ar'-}-Br)
where
oo _w 2
g(w,8) = |). g (8) e 77 . (1.6)
u=0

¢

See Whittle, 1952, p. 53, equation (4.14) and 1954, p. 224, equation

(115, Note that the change in sign of the first two elements in the

last row and last column in (1.5) is due to Whittle haﬁing interchanged

Ar and B, in (1.2), and that his computation of the bottom diagonal
‘element is incorrect, the numerical factor being 1/3, not 1/6.
(2) (Al,Bl,ml), (AE’BE’wé)’ cer s (Aq,Bq,mq) and 6, the
estimator of O, ére/all mrtually asymptotically uncorrelated.

(3) 'Q is asymptotically normal with mean O and covariance

matrix (nW)_l{ where the elements of W are given by

dw

1 7o log g(w,8) o log g(w,9)
)

W. .
ij . o Qi %) Gj

1 . ) N u2
=5 (constant term in expansion of 35; {logiggg gu(g)z i }

/

o) = u|2 e
Xgﬁ-Uoﬂgi)aﬁgﬁ |} on the unit circle) .

See Whittle, 1952, p.49, equation (3.7), 1954, p.21h4, equation (7).

The estimators are obtained by minimising the expression

(1.7)



e

(o] n
-1
& o8k -2n™t Y n(w,8) .Y X, (A cos wt + B sin v t)
[slf_n-l ° & r=l . t=lJE r r r o

(1.8)

l—l

q R
2 2
3 ), R0 (8 3D

where C_ = R ] B

=1 t “t+|s] (0 < s < n-1) are the sample

covariances (with divisor n), h(w,8) = {g(w,g)}—l, and

i

a(e) = & [ e n(u,8) aw . (1.9)
-7

Com;pare Whittle, 1952, p.50, equation (%4.5) or 1954, ».223, equation
(7). These, apar£ from a factor n, are the same as (1.8) when the
 expression for QS(Q) given by (1.9) is substituted in the latter.
| Our obJject will be to present proofs of these results stated
precisely as limit theorgms, under conditions which should be satisfied
in nearly all applications. These follow the usual pattern, whereby
consistency of the estimators is first estaﬁlished, and then the mean
value theorem applied to obtain asymptotic normality with the aid of a
central limit theorem. However, great care needs to be taken with the
details, eséecially in the consistency part of the proof. It might be
thought that a simple modification of the argument used in a previous
paper (Walker, 1964) to give a rigorous proof of the result (3) above
when nouharﬁonic components are present would suffice, but the presence
of the uﬁknown frequencies makes the situation a great deal more compli-
cated. In.the 'white noise! case, X, =m +te

Tt t Tt
although still quite troublesome, are substantially reduced. We there-

the complications,

fore deal first with this simpler situation in the present paper. The

general model with residuals generated by a linéar process will be
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considered in a subsequent paper. Appfeciable simplification is also
achieved when there is only one harmonic component present.. for this
reason, we shall take q=1 in (1.2) in the proof that follows in

§82-4, and then indicate the modifications fequired when gq>1 in §5,

the final section of the paper.
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2. Consistency of the estimator of angular frequency.

For g=1 it will be convenient to maké a slight change of notation,

and write

'm = Acos wt +B sin wt . (2.1)

In the 'white noise' case, h(Q,Q) =1, and so (1.8) reduces to
-1 & 1,2, .2
Cy- 20" 3 X, (A cos wt+B sin wt) + S (A=+B%) . (2.2)
' t=1

0]

Minimisation of (2.2) with respect to A, B, and ® then gives

estimators
A 2 zri A ~ 2 n ~
A = = X, cos wt , B = = ZXSinwt, (2.3)
n n £2) t n n =1 13 :
and wn such that
T (w) = max I (w) , (2.4)
n' n O<w<x n
where
2 - iwt 2
1w = S|y x P, (2.5)

the usual definition of the -periodogram intensity function (see, for
exémple, Hannan, 1960, p.52). The suffices n have been added to

emphasise that the estimators dgpend on n; strictly we should write
Kn(X(n)) etec., but the omissionlof the argument X(n) will cause no

ambiguity.



==

Now (2.2) is approximately equal to nt S(A,B,w), where

S(A,B,w) =

ol
=
}LM

(X%-.A cos wt -B sin wt)2 (2.6)

is the residual sum of squares, provided that ® is not near O or .

For
E: (A cos wt+B sin wt) (A?-ng)
t=1
L o 2 2 |
= 3 Y. {(A®-B%) cos 2wt +24B sin 2wt}
tT=1
and
. 1w(n+l) sin nw
). (cos 2wt+i sin 2wt) = 0(1)
" t=1 Sll’l(.t)

if o lies in a closed interval contained in [O,x]. Thus our estimation

procedure should be a reasconable one if the true value of w, wo say,

is not O or . =.

From now on we therefore make the assumption

A0 or wm , (2.7)

which is quite a mild restriction. (2:7) would not be needed if we

were to.determine Ah, Bn’ wn by minimising S(A,B,w) exactly, but

this leads to much less pleasant estimation equations which are extremely
| inconvenient for. theoretical investigation of properties of the
estimators.

When €4 1s normal, the log-likelihood function is of course

S(A,B,w) (2.8)

1
Ln(A,B,w,v) = - 5n log 2nv - =
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.aus An, Bn, wn are approximately maximum-likelihood estimators,
being obtained by maximising a modified log-likelihood function given
by replacing o S(A,B,w) in (2.8) vy (2.2).

”~

Since »wn is determined by maximising In(w) it is natural to
show first that this is consistent. We shall in fact obtain a much
stronger resulit, without which it is not clear how to establish con-

N

sistency of A and B .
. n n

Theorem 1. ILet m, =A_ cos Wt + BO sin th where ) £0 or =x.

t 0 0
Then if w_ is such that I (w ) = max I (w),
. n n' n 0<w<n n
B o O = o (n-l) n - o (2.9)
n O D b b4 *

so that in particular wn is consistent.
Proof

From (2.5) we have

n £
1 v lwt . 2
5 n In(w) = Ié&i e (AO cos wyt +B, sin wot»+et)| . (2.10)
Write
1w0t -iwot
. g = *
AO cos wot + BO sin th DO e + DO e

where D. = % (A

) 1
- ¥ =
: iB)), Df =35 (a

% = -+iBO). Then (2.10) gives

0 0

n
1 =
5 n In(w) = IDO Mn(w+wo)4-Dé Mn(w-wo) + ééi 8, e

Where



Dot % i(n+l)u [/sin % nu
M (u) = e = e {—-1], O<u<?on
n L
t=1 sin 5 u
,(2.12)
= n , . ' u=0 or 2=n
that is,
1 = iwt |2 = 1wt
e = ' : * -
- n In(w) | 2: €. |~ + 2R(( 2: €. )(DO Mh(w+wo)-+DO Mh(w wo))}

t=1 t=1 _
; L _ (2.13)

' 2
> s :
+ IDO Mn(wmo) +D¥ Mn(m mo)l .

When W = w (2.13) is dominated by the term

O)
2 L 2,,2,.2
% = = + .
n’ iw t
In fact, since the real and imaginary parts of Zt=l~€t e each
have variance % nv + 0(1), so that
n iw, t ;
0° 1/2 B :
};'1 e, e = Op(n ) and Mn(QwO) = Op(l)
because of the condition Wy #0 or =, we see that
1 1 2,2,.2 3/2
L= = = +
5o In(wo) g (AO BO) + Op(n )
or
L e 2 1/2
In(wo) = 2n(AO+BO) +Op(ln ) (2.14)
We now obtain an estimate of max In(w), where ©
-1
I“’-U’O‘Zn

o}

can be arbitrarily small. For this we require the inequality
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n n

B{ max |) €, © l"’tl} < V{n+2f xl/g ax} . (2.15)
1

8 e
iwt,2 iws -
1.2: €, © | = ]slggn_l e éél St Stals)
n-|s|

ls| <n-1 | t};l St etﬁ+lsll ’

—

whose expectation does not exceed

n-1
B (Y “Zi *e2 >., E{( >.. €y © trs)e)l/2 = vin+2 Z. (n-5)Y/2)
t =1

(Compare Walker, 1965, p.1ll12, equation (29)). From (2.15) we have

mex | }J imt12 = 0 (n5/2) . (2.16)
O<w<sm t=1 P

Using (2.16) and

mex M (w+w )| = o(1) , mx M (w-w)] = n ,
O<w<m n Y 0<w<w n .

we see from (2.13) that

1 2 3/2 /%
L CRIL I 0y /%) + 0, ) + 0wy,
giving
max lIn(w % (A +B2 ) ]Mn(w-mo)l2l = Op(nB/h) . (2.17)

0<w<m
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If we were to add the assumption tlhat E(Ietlr) < o for some
r >4, we could use a much more powei‘ful, but by no means elellmentary,
result of Whittle (1959, p.180, equation (44)), according to which the
factor n5/? in (2.16) can be reduced to N log n, so that (2.17)
becomes O:Ip{-(n log n)'l/2}> but this is not necessary.

Now the function IMn(u) ]2 = (s:’Ln2 % 1:111)/(&;:11{12 -;‘— u), 0<u<2an

decreases steadily from its absolute 'ma)ci.mum of n2 at .u=0 toa
minimum of zero at u = 23t/n. For the derivative of log ]Mn(u)l2 is
1 1 "
n cot Zmu - cot Fu = (2/u) {y(nu) - y()} ,
where V(x) =x cot x, and

Yi(x) = -2]: cosec” x(sin 2x~-2x) < 0 when x>0 .

Hence for any prescribed &, such that (sin % & /% 6)2 > l/:tg,

21

) 2 sin -2— o)
max—l ]Mn(w-mo)l = .Sin2 = (2.18)
]w—wol >n "0 2

when n is sufficiently large, since further local maxima of this function

mist be less than cosec2 -;[I . It follows from (2.17) that

s:’ua2 = &)
max’ In(w) < % (A +8° ) 5 12 =) 0 (nB/Lli)
lw-wol _>_n-l6 sin 5z n o)
. 1
sin = =n" 6
= n(A+B) 12 21 +0(5/h) (2.19)
=5 in zn

if n>no(6), say. Hence



il

p. um (ot max In(w)_}

. sin L o] B
" 1 (A2+Be) 2 "
n - o -1 SRR 0 = 3] '
lw—woi >n "o 2

<-é‘- (A‘(?)+B§') =p lim {n“l In(wo)}, from (2.14). This implies

n — "o

nlimm P{ max " In(w) < In(wo)} = 1 ,
|w-w. | >n" "8 i
O —
and therefore
lim P{nlwn-woi <8} = 1 . (2.20)

n - o

As & can be arbitrarily small, (2.20) is equivalent to W -
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3. Consistency of estimators of coefficients of sine and cosine terms.

2 .n ~ . 2
= Zt:l Xt cos wnt, Bn = Z

X, sin wt. (2.3)

~ n
We had An = -1 Xt

Theorem 2. Under the conditions of Theorem'l,

p lim A = Aj and p Um B = By . (3.1)
n - « n -«
Proof
From the definition (2.3),
54 ~ n iw t -iw. t iw t
An + i Bn = %- (Do e +DX e 0 '+€t)_e n »

~and so

.A
iw t

n
_.2_ ~ A— n
O) S {DOMh(wn+wo)-+D6(Mn(wn wo)-n) + ééi ey e J

”~ I
(An—AQ) +i (Bn-—B
Thus

] (KH-AO) -'fi(gn—Bo) |

~ (3.2)
2{p,| ,\ = 5 & 10 t
= {IMn(wn+wo)|-&IMh(wn—wo)—nl} f E-Ig;l € © | .
Since Iwn—wol < ® 1is equivalent to Qub—é < wn+wo <'2wo+5,
consistency of wn clearly gives
p lim n~t |M (8 +w)| = 0 . (3.3)
' n*n 0%

n - o

Also



1

”~ A
Mn(oon—wo) -n = Mn(wn—wo) - M _(0)

(3.4)

(0 -w,) W ()

”~ g
where X g.(wo,wn), by the mean value theorem. But for all w,

n B
M| = |} i < »® .
n tz=:l
Hence ' : .
07t (0 -0 )-n) | < nlan ~u|
= op(l) by Theorem 1 ,
. that is,
. 5
| p U [n™ (M (w -0y} ~n)| = % - (3.5)
Finally, from (2.16), |&& jLa)nt] =0 (5/4)
ina ly,y rom . B =1 € e SO ?. , and so
o n i;nt
p lim }I' €, e | = o . (3.6)
n - o t=
(3.3), (3.5), (3.6) thus give
p lim [(An—AO)+i(Bn-BO)] = 0 .

n ~ o
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Y. Asymptotic distribution of the estimators.

Define

=

Un(A,B,w) = Z }{2 -2 Z X, (A cos wt +B sin wt) + 5 (A +B° ) ,' (h.1)
- : t=1

which is equal to the approximstion to the residual sum of squares that is

minimised to obtain the estimators wn’ An, Bn' Writing

U 3 ' -
<5 ='(Un)A, SESS = (Un)Aw’ etc, we have, by the mean value theorem,

" Oa, = CdauanBohy) + (0 D) ¥ O p(g0) 5o (12)
003 = (0 ) Ce) + () Bo) + (U )p(065,) > (03)
and, _
s, = O asunBoh) * O BB ) (0 e(pmi) 5 ()
n nn

where Wwe use the generic notation (Ag,Bﬁ,wz) for a point on the line

joining (AO,BO,wO) and (An,Bn,wn), so that

(AEJBK:MQ) = ?\(AO’ O’w ) + (l—x)(An’Bn’wn) 2 B ()‘1"5)

where 0O <A < 1. The fact that the points (Aﬁ,B;,mﬁ) in (k.2),

(4.3) and (4.4) are different will cause no ambiguity.

Now
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. n
(U) =nA -2 2: X, cos wyt

n AO "0 =7t 0

1l

n
2 .
- s 4 ;
n AO 2 él (AO cos mot-+BO sin w.t cos mot €, cos w_t)

0 t 0
n ' :
= -2 e, cos wt+ 0(1l) .
& t 0
Similariy
n .
U)g = -2 ) e sinugt+o(1) , (&.7)
. 0 t=1
and
. a
(Un)w =2 ) €y t(AO sin Wyt -By cos mot) + 0(n) . (4.8)
0 t=1
The sums.in (%.6) - (4.8) are all of the form Zz=l k e, , where
n .
lim max Iktl/(EZ ki)l/2 & 0 = (4.9)
n - o0 lf_‘t- il’l t=1

For example, with (L4.8)

(4.6)

2ok 2. 8.1 2 1.2 .
) k, = b >t {-5 Ao(l - cos 2mot) +5 BO(l + cos 2mot) -A B, sin 2mot}
t=1 t=1
5 2. B o 2 2 3,2, .2 2
= + : = = :
2(AO BO) ’c->E'lt + 0(n~) 3 (AO+BO) +n"

Tt follows that the central limit theorem will apply to these. For (4.9)

implies the ILindeberg condition (see, for example, Rao, 1965, p.108},
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since, writing

Z 1/2

and G, for the distribution function of Nys, We have

b

n .

. 2 2 1
y f T aa (n)/d = %
t=1 . |n|>80n o

where 'F is the distribution function of s and so does not exceed

B dF(e), which tends to zero when n - . Thus

ct
&Pﬂs

ki h/1 _ & ar(e) ,
el >80 71k, |

o

Fle1> 80 fmax|x,| ©
- ~-1/2
V2w ), , 0w
0
N(0,2v), N(0,2v), and N(O,2 (A )v) when n - «.

gD 5/2(U )w converge in law respectively to
0
For the limiting joint distribution we consider the random variable

Vn(lihg:K5) = Al n_l/g(Un)A0'+h 1/2(U ) tA, n 5/2(U )

, TWhere
By 3 %

tThe hi are arbitrary real numbers. Now

v -3/2
v, = 2 zﬁ-e [hB n t(A sin Wyt ~B, cos & t)

1/2

e (h) cos ot +n, sin wyt)} +0(n"77) ,  (4.10)

; o n oo
and the sum in (4.10) is of the form B g kn,ﬁ e, Where

5 n X
lim max |k |/} 12 )l/2 = 0 , (k.11)
st n,t
n-w 1<t<n £=1
. N -1/2
~ the numerator in (4.11) being O(n ) and the denominator O(L).
Hence the central limit theorem will apply to this sum also by using
the generalised Lindeberg condition (see, for example, Lodve, 1960,

p.295), which is implied by (L.11) in exactly the same way as the
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ordinary Lindeberg condition is 1mp11ed by (4.9). Now a straight-

forward calculation shows that

s

N - NI - T N-
nl.l,mw ) kn’t N 2(xl+x2) + 5(AO +BO)}\5 + 2130)\17\5 - 2AO)~,2>\5 . (4.12)

1

Thus Vh- converges in law to a normal distribution with mean zero and
variance (4.12). Consequently, by using the equivalence of convergehce
in law and pointwiée convergence of characteristic functions, (see, for
éxample, Rao, 1965, p.103), we see that the joint distribution of
n-l/Q(U ) n;3/2(U ) converges in law to

n BO n wo

N((0,0,0), 2vW) (k.13)

where

1

W = O l - "'2‘ AO o (l}--ll}')
1 1 1, 2.2
58y -gh8 5

Next, we look at the behaviour of the second partial derivatives
occurring on the right-hand sides of (4.2) - (L.L). Three of these

requiré no analysis, as
Upp = (Ulgg = 1, (U)yg = O - (k.15)

Now (U =2 5 t L %, tsin wt, and so

]

n
. + e
2 Vé (AO cos Wyt +By sin Wt et)t sin wkt

(Un)A*w*
nn

n n
A = 3 d %
B, t};l t cos(mﬁ wo)t +2 tgl €, t sin w¥t +0(n) . (u..16)
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From Theorem 1, ® - w, op(n_l), and so, from (4.5), we also have

|

- o (nt
Wk -0 = op(n. ). Hence

n i(w¥-w )t
te .20 = Mr'l(wx—wo)

t=1 : .
- t - u - ’
= M!(0) + (uw¥-wy) MY(N(w¥ -w.)) O<A<L1

1 2
=5 n(n+l) + op(n ) i
since - IM"(w)] < Zt -5 £~ % n  for all w, and so

plimn Ztcos(w* w)t:
n - o t=1

o]~

(ha7)

" Also, employing an argument similar to that following equation (2.15)

in §2, we have

o 5]

n
o ~
|y e = ¥ Zl t(t+|s])
1;l t ls]in- t= %t t""l l
| n-|s|
< Z l }: e‘b e't+|S| t('t'l‘ISl)I )

so that

. n .
E{ max ]Z ettelwtle}

IA

n o n-1 n-s v 1/2
E(t};l toe) +2 séi [E{(t);l'et €ppg B(t48))7)]

-1 n-s |
L) v2 3 LS t2(tes)2) Y2
5 nln 2 Z (t+s)

< % n(w1) + 2(n-1) TR /)

(4.18)

2
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((4.18) is a rather crude inequality, but it suffices here.) It follows

from (4.18) that

n n

. ~ ™ i Ll.

| e, tsinwt| < { max | € telwtig};/e = 0 (n7/ ) . (4.19)
; B noo 0<w<x gﬁ E p

Hence, from (4.16), (4.17), and (4.19),

; -2 1
P Mm w0 )y = 33, - (%.20)

n - o

Similarly, since

.
(Un)B*w*. = -2 ) (AO cos Wyt +B, sin wot-+et)t cos wkt
nn =1
n : n
= -AO Eﬂ 19 cos(wﬁ-—wo)t -2 z: €.t cos WXt + o(n) ,
-t=l 't:l
we obtain
. -2 _ 1
n - oo nn
Finally,
= * K 4
(Un)wﬁwﬁ 2 égi Xt (An cos WXt +B¥ sin @ﬁt)

n
= 2 2: tg(Ao cos wot-FBo sin wot)(Aﬁ cos wﬁt'+B§ sin wﬁt)
=1

n . n .
+ 2 A¥ z: €, t° cos Wkt + 2 B¥ 5‘ e, t° sin wit . (4.22)
n £ t n n £ t n

We can show that
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n ) .
E{ max IZ eteele.cle} = 11/2)

o<w<nm t=1

& o(n

in exactly the same way as we obtained (%.18), and hence, (4.5) giving

consistency of A%  and B*ri, that the last two terms of (4.22) are

each Op(nll/h). Also the first term of (4.22)
= f: te{A A¥ cos(w¥-w )t +B B¥* sin(w¥-w )t} +;) (ng)
=2y .On n O On ,n 0 P
N TS 5 |
= o (& +B) + op(n ) (4.23)
since
n i(w*-w )t ‘
Z e Al = Mg(wﬁ-wo)
t=1
' = 1t - 1" %t
Mn(o) + ("’?1 wo) Mn{?\(wn wo)} 5 0O<AN<L .
Hence
: ) _l.2 .2
p Lim n (Un)w*w* = 3 (AO +BO) . (4.24)
n - n n
Thus if
=1 -1 2
(Un)A*A'ﬁ n (Un)A*Bg B (U] pon
W= | n'l(U ) n'l(U ) n-z(U ) (4.25)
. n n’AXBx n’BXB¥ n’BXw¥ g .
o n 2 n 3 nn
DU ) B Updpge 07 (U e
nn n n nn
we have, from (4.15), (4.20), (4.21) and (k.24),
p lim W& = W . : (k.26)

n -«
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We can now easily establish the following result.

Theorem 3. Under the conditions of Theorem 1,

l/2(A —AO) 1/2(3 -B ) 5/2($n-wo)} converges in law to

N(o, 2vW L) (k.27)

when n -, where 0 denotes the row vector (0,0,0).

Proof. Writing (4.2) as

n-1/2(U

n)AO = a (Un)AiAﬁ nl/Q(Ao"&n)'m_l(Un)AgB* n™ "(By-B,)
+n 2(U’)A%w* 5/g(w -0 ) s
n
“and (4.3), (k.4) similarly, we see that
_1/2(U ), O’ 1/2(U.) B n_5/2(Un)wO
3 {nl/g(ﬂn-AO) 1/2(3 -B,) 5/2(w ~w.)) W
s
s 1/2(A ‘Ao) 1/2(B Bo) 5/2(an_wo)

- {n_l/e(uh)Ao’ n_l/e(Uh)BO, n‘5/2(ﬁn)wo} ()t . (h.28)

Hence, as 1/2(U )y » n"l/e(Un)B ; n_B/g(Uh)w } converges in law to

0
N(Q, 2vW), equation (4.13), (L.27) follows from an obvious generalisa-

tion of-an elementary limit theorem namely that if Yn,Y are row vector-

valued and Zn matrix-valued random variables such that when n - «,
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Y L Y, plimZ =C, then Y2 EYC (E denoting convergence in

law), whenever the products are defined. (Compare, for.example, Rao,
p.102 (xb)).

(4.27) is the rigorous statement of the result (1L.5) for q =1
and g(w,8) =1 as a limit theorem. The explicit formula for the inverse

of W is

. (44,29)

An equivalent way of stating the result of Theorem 3 is therefore that

fa) ~ ~
" the. distribution of (An,Bn,wn) is asymptotically normal with mean

(0,0,0) and covariance matrix

1

21, 2.,.2 -1 2
n (AO+4BO) . -Zn TAB, -6n B,
=¥ | ol n"tuat48%)  6n7a . (%.30)
3 5 0°0 00 0
Aty 2 2 -3
' -6n B, 6n A, 12n

The most notable feature of (4.30) is the very rapid decrease of
the asymﬁtotic varience of W , 24v/{n§(Ag+B§)}, when n increases.
In fact in maximum likelihood estimation it is very rare to obtain an

3

asymptotic ‘variance of order n ~, although asymptotic variancgs of
n are not unusual. This phenoménon is due to the sharpness of the_
- largest peak of the periodogram intensity function In' We might con-
sequently expecﬁ the asymptotic variances of Kn and En to be the

same as if the frequency W, were known, but we see from (4.30) that



.

~

this is not so. For example, the asymptotic variance of An is
2v(Ag+ )-LBg)/{n(Ag+Bg)}, ~which is greater than 2v/n, the asymptotic

. 2
variance of = X

n
n Do Xt- cos wot, unless B, = 0.

0]
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5. The case of several harmonic components.

Suppose now that

r,

q |
m = B(X) = rgl (A, gcosw, b+B, osinw o t) ,  (5.1)

and denoting the true values of the parameters. The

AT’O) Br)o r,0
function corresponding to (2.2) whose minimisation yields estimators
Ar,n{. Br,n: wr,n‘ (1 < r < q) then becomes

. q n q ;
. -1 . 1 2 2
CO - 2n Z Xt(Ar cos w t+B sin wrt) +5 Zl (Ar+Br) . (5.2)
r= —t=l =
Thus
Ar’n == ¥ X, cos w, t, Bon = & Z X, sinw,  t - (5.3)
. t=1 t=1 g
and if we write
w = (‘{’l;weyﬂ--ﬁwq) s wo= (wl,n’NE,n"”’wq_,n) P
q
o (@) = 3 I(w) (5.4)
r=1

is a maximum when W =W .

Here, however, since terms of the form ArAS 22_ cos wrt cos wSt

1
' n ) 3 . ety
and BrBs 2t=l sin wrt sin wst have been dropped in obtaining (5.2)

from the residual sum of squares

Mis

q
2
v . , : ,
(X, E;l (Ar cos w t+B  sin wrt)} 5

t=1

i

the maximisation of (5.4) cannot be unrestricted; some condition must
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be imposed to keep the wr from being too close together and so prevent
two angular frequency estimators from converging in probability to the

same value. In fact unrestricted maximisation obviously makes the

e

Qr n all equal to the angular frequency for which In attains its
5 .

absolute maximum, and this will converge in probability to the w -

r,0
for which the corresponding amplitude _(Ai +B )1/2
: J

otB. o is largest.
2

The required condition is

lim min  njlw -0 | = o . (5.5)
n - o lSr#sSq =

We might therefore, for example, minimise (5.14) subject to

min’ ]wr-wsl = n_l/g . (5.6)
r % S e .

:

When (5.5) holds, then in the relevant domain, S, say, in ®

space of the function @n, only q of the q2 differences ws- Qr 0
. : ’ J

_1).

can be 0(n If we label the components of the argument of ¢ so

that these differences are wr'-uE o> Ve see that the behaviour of
2

N

q

L o r |2
= = * =

500, (0) r};l IA (D oMyl by o) +DE M (w-0, )+ ) e ._.l_ ;

D
where

1 .
Dg,o =5 (B 0-1 B o) >

. ) . 2
is controlled by the sum of terms ﬁD?}OMn(wr-wr’o)} when wr—wr’O

(L<r<gq) are small. In fact, we can show, just as in §2, that if

we take a sequence of sets {Sn}/ for which (5.5) holds, then
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q
1 -1 2 2 2l .3/
max ”mn(g)-g-n 2: (Ar,O+Br 5 lM (w -0, O)l = Op(n )
we$S r=1
wesd | :
Tt will follow that if R, = (u; lw -6 l <nls, 1<r< q} is con-

d
)
tained in 'Sn, which w1ll be true for sufflclently large n, and

(¢) _
Rn,6 =5, - Rn,b

sufficiently small B,

denotes its complement W1th respect to Sn,. then for

Ll N2
_ a o _ sin = 931
p lim {0t max @ (w))} = X ¢ (&2 485 ) & . (5.7)
- nt— 2 r,0 "r,0 1
n - oo e R(c)- =1} 25 )
= n,d
From (5.7) it is easily deduced that
p lm n(w -w ) = 1 . (5.8)

r,n 1,0

n - o

Since is symmetrical in its g arguments, a means of deter-~
®, s

N

mining which component of w dis associlated with a particular freqﬁency

has to be found. We can, however, obtain this from the fact that

R Ry _ 1,2 L2
p nlimoo n In(wl")n) - 2 (Ar’o+Br’o) 2 (5'9)

which is fairly readily demonstrated by using Taylor's Theorem and (5.8).

If therefore the wr 0 are labelled so that

. B ,

2 2 2 2 2 2 : . : ‘o .
Al o Bl 0 Z'Ag o B2 02 > ees Z'Aq,o Bq,O’ then with probability tending

to unity as n - o,

In(wl,n) > In(w2’n) > > In(wq, .

~

Thus if we determine the w, & the q largest local maxima of the
. )

periodogram intensity subject to a separation condition satisfying (5.5)
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these will, for sufficiently large n, almost certainly estimate the
frequencies of the harmonic componenfs arranged in descending.order of
magnitude. -
We then deduce that
~
p lim Ar = A

gsl 1,0’
I = o n - oo

by an argument of the type used in §3.

'

Finally, if we denote (5.2) multiplied by n by Un(é,g,_u_)),

— l)BEJ

(4.1)), we see that Un(é,g,g) is of the form

where A = (Al’A2’°'°’Aq)’ B = (B ...,Bq), (compare equation'

n
~ , (n)

Xi+ Y fn’r(Ar,Br,wr,_}g ),
so that applying the mean value theorem as in Sk gives us q sets of

equations each of the form (4.2) - (4.4t), namely

1/2,% 1/2,n 3/2,"
(n (Ar,n Ar,O)’ " (Br,n Br,O)’ " (wr,n‘wr,o)}

= Ry, YR,
r,0 r,0 - r,0

in an obvious notation. From results of the type (4.6) - (4.8), for

example,

n

(Ui )A = -2 >“1 €, cos W .t + o(1)
r,0 L= ’

and an application of the central limit theorem as in 84, it follows

that the rovw vectors on the right-hand sides of (5.10) are asymptotically

distributed independently as N(Q, EVWT), where the matrix Wr is
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obtained by replacing AO?BO in the expression (h.lh) for W respec-

tively by A - ,B Again as in §4, we can show that

r,0° r,0"

lim W* = W
P noow IoB r ’

and so we reach the conclusion that the fow.vectors on the left-hand
sides of (5.10) are asymptotically distributed independently as

N(Qj 2vW;l). This is the required generalisation of Théorem 55

In practice the determination of the estimators ®w, N
: 2

could be
ve?y troublesome because of the difficulty of maximisiné @n(gj sub-
jec£ to a restriction such as (5.6) and the awkward problem of the’
appropfiate choice of an appropriate minimum separation to be used for.
~a particular set of data would also arise. We shall not consider such
quéstions here as our purpose is restricted to the rigorous derivation

of ‘asymptotic properties. We note, however, that an asymptotically
o

equivalent procedure would be to determine w by maximising In(w)

1,n
unconditionally, then w, by maximising unconditionally

o1
iwt,2 o z
l > where Al,n’Bl,n

2
.t ~ ~ N . ~
!2n=l (XJC\-AJ_J-l cos wljnt-BlJn sin @ ’nt) e

1
are obtained from (5.3), and so on, W

being finally determined by
2

maximising

t q_"l ~ ~ ~ A .(A)'t 2
| z:-{X - (A cos w__t+3B sin w_ _t)} e C|° .
ic r,n r,n r,n r,n
n=1 r= ’
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